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Sometimes the law of motion of a shock wave front from a explosion in a continuous 
medium can be found without obtaining a complete solution to the explosion problem. For ex- 
ample, for a point explosion in an ideal gas, self-similarity makes it possible to obtain 
the motion of the front of a strong shock wave from considerations of dimensionality [i]. 

Motion is not self-similar for an explosion in a solid (for example, the ground). At 
small distances from the center of the explosion in the strong wave region, self-similarity 
does not exist because of the uncertainty in the location of the explosion. At larger dis- 
tances, where the explosion can be taken as a point source, there is no self-similarity, 
because now the wave is not strong. Nonetheless, in the initial stage of an underground 
explosion, while the wave is strong, the law of motion and the front parameters of the wave 
can be found approximately without a full solution of the explosion problem. This can be 
done with the aid of a "crust" approximation or the expanding-shell approximation [2-4]. 

The moving ground between the explosion and the shock wave front is taken as the shell. 
The mass of the shell grows due to the work of the explosion products on its inner boundary 
(the gas-ground contact surface). 

Use of the laws of conservation of mass, momentum, and energy and considering the con- 
ditions at the shell boundaries makes it possible to obtain an ordinary differential equa- 
tion for one of the parameters of the shock wave problem. This makes it possible to com- 
plete the system of Rankine-Hugoniot equations, to find the law of motion of the front and 
the boundary of the explosion products. This method was used to calculate the parameters 
of the shock wave front for the explosion in an ideal gas [2, 3, 5] and in the ground [4]. 
However, in [4], the cold component of the pressure was ignored in the ground and in the 
compressed shock wave. 

Here we consider both the hot and the cold component of the pressure in the material 
behind the shock wave front. It is shown that over almost the whole range of existence of 
shock wave from an underground explosion, the cold component of the pressure exceeds the 
hot component and cannot be neglected. A differential equation is obtained for compres- 
sing the ground in the shock wave front. By solving it, all the parameters of the front 
and the law of motion of the boundary of the gas cavity can be expressed for an underground 
explosion. 

i. Formulation of the Problem. The medium in which the explosion occurs is assumed 
to be a porous solid body (ground). Let 91 be the initial density, P0 the density of the 
continuous uncompressed ground, k = 90/P the porosity, co the speed of sound, and n a parameter 
which characterizes the compressibility of the ground. 

The explosion is simulated by the adiabatic expansion of a plasma from the explosion 
products. The plasma is taken to be an ideal gas with an adiabatic index ~3. The initial 
radius of the gas sphere a s is proportional to the cube root of the energy of the explosion 
E3: 

a3 = ~ E~/3 (1.1) 

where ~ = 0.16-0.47 m/kton I/3 [6]. The initial density of the explosion products p~ is 
equal to the density of the surrounding ground. The initial pressure in the explosion p~ is 

The pressure p~ is so large that the spherically symmetric motion which arises in the ground 
is described by the equations of gas dynamics: 
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a-T -aTr (pu) + -7- pu = 0, W (pu) + -aTr [(pu) ul + - 7  (pu) t~ + =0,  ( 1 . 3 )  

Here p is the density, u is the mass velocity, p is the pressure, e is the internal energy 
per unit mass of ground; ~ t is the time, and r is the coordinate, 0 <- t < ~, ra(t) <- r <- 
R(t), r3(t) is the law of motion of the boundary of the gas sphere, and R(t) is the law of 

motion of the shock wave front. 

The equation of state of the shock front is used in the Mie-Gr{ineisen form [3] 

p ( V , T ) = p x ( V ) + p T ( V , T ) ,  e ( V , T ) = e x ( V ) + e T ( V , T ) ,  e x =  

V o 

= S px (V) dV,  PT = FeT/V, 
V 

w h e r e  V = 1 / p  i s  t h e  s p e c i f i c  v o l u m e ;  T i s  t h e  t e m p e r a t u r e ;  Px a n d  PT a r e  t h e  c o l d  a n d  h o t  
c o m p o n e n t s  o f  t h e  p r e s s u r e ;  E x a n d  CT a r e  t h e  c o l d  a n d  h o t  c o m p o n e n t s  o f  t h e  i n t e r n a l  e n -  
e r g y ;  Y 0 i s  t h e  i n i t i a l  v o l u m e ;  a n d  r i s  t h e  G r { i n e i s e n  c o e f f i c i e n t .  

The  d e p e n d e n c e  o f  t h e  c o l d  c o m p o n e n t  o f  t h e  p r e s s u r e  on t h e  v o l u m e  i s  t a k e n  a s  a p o w e r  
l a w  

p~ (V) = (c~/nVo)[(Vo/V)~ - -  t] = (poCo2/n):(6" - -  1) (6 = Vo/V  = P/Po). ( 1 . 4 )  

The boundary conditions at the contact boundary are a discontinuity in the pressure and 

the normal components of the velocity: 

_ F aa ] 3"~3 u(r,t)l,=,~( o = ra(t ) (rs_~drs/dt)" ( 1 . 5 )  

The conditions at the shock wave front are the Rankine-Hugoniot conditions: 

P~(-8--u2)=P~R, P2=P2u2(FI--u2)+P~, % =+(P~+PO Pl ~ + e l ,  (1.6) 

where the subscript 1 denotes values ahead of the wave front and 2 the values behind it, 

and R - dT/dt. 

For a strong shock wave, gl << E2 and Pl << P2; as a result, we assume gl = Pl = 0 in 
the conditions (1.6). Moreover, the shock adiabat (1.6) 3 of the solid body (1.4) is de- 
scribed by the interpolation formula of Zababakhin and Zel'dovich [3]: 

(h --  t) Px --  2~dv2 P~176 q ((~) ( 1 . 7 )  
P2---- h - - V 1 / V  2 n h--k(~ 

H e r e  ~ =  P ~ / P 0 ; i k = p 0 / P l ;  q ( ~ ) =  a , a  ~ - a 2 ~ + a a ;  a ,  = h - -  (n + t ) / ( n - - t ) ;  ~2 = 2 n / ( n - - l ) ;  ~a = 
i - - ( h  ~ - 1 ) ;  h = 2 i F  + , 1 . '  W i t h  t h e  u s e  o f  t h e  v a r i a b l e  o ,  c o n d i t i o n  ( 1 . 6 )  f o r  t h e  s t r o n g  s h o c k  
w a v e  i s  w r i t t e n  i n  t h e  f o r m  

Poco 2 qo ((~) ( 1 . 8 )  
P 2 = P 0  ~, u 2 - -  -k-~ P 2 =  n h - - k ~ "  

The  i n i t i a i  c o n d i t i o n s  a r e  

u(r, t)h=o = O, 0 ~-~ r < ~ ,  

pu, OW=o=Ip , LOp r > a 8, p (r, t) It=o = Pl, 1"> aa. 

The shock wave propagates as the result of the expansion of the explosion products in 
the ground. We must find the law of motion of the shock wave front, the boundary of the 
explosion products, and the material parameters at the front: the compression, the mass 
velocity, and the pressure. 

2. Solution. Equation (1.3) is integrated over the volume which is included between 
the surface of the gas sphere ra = ra(t) and the shock wave front R = R(t). By considering 
the conditions (1.5), (1.8), and (1.9) we obtain a system of equations which express the con- 
servation laws for a layer of ground set into motion: 

( 1 . 9 )  
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R 

pr 2 dr = P o ( 1{3 -- a] ) 
R3k ' 

r 3 
R R 

d 2 (a3)3?3 

r 3 r 3 
R 3 
y~) u 2  a3p 3 [~. ( % / ?a------T]. 

5 

(2.1) 

The adiabatically expanding explosion products act on the ground like to a spherical 
piston, which is moving and decelerating. Therefore, behind the shock wave front, the den- 
sity, pressure, and velocity are decreasing functions of the distance from the front~ The 
profiles of density, pressure, and velocity should be similar to the same quantities behind 
the front of a strong shock wave from a concentrated explosion [i]. For example, the den- 
sity should have its largest value at the front and fall off sharply behind it. The pres- 
sure should vary approximately the same way, only it does not die out to zero like the ve- 
locity, but to some value equal to the pressure at the boundary of the gas cavity. For 
these reasons, we approximate the profiles of the density and pressure behind the shock 
wave front as Dirac delta functions, as in [5]: 

p(r, t) = A(t)5(/~ --  r); ( 2 , 2 )  

p (~, ~) - p (q) p A 
! P* " P  (%) ~ P2 P~ (3 (R  - -  r). ( 2 . 3 )  

By substituting (2.2) into Eq. (2.1) I for the conservation of mass, we have 

A (t) = P0 ( R3 --  a])/(3kR2) �9 ( 2 . 4 )  

By using Eqs. (2.2)-(2.4), we obtain from the conservation equations for momentum and 
energy (2.1)2, 3 

I ] a ( % ' ]  3v3 R 2 2 ( B 3 - - a ~ )  2PoCo~( R a -  2) p, ( 2 . 5 )  
P0 d [(R3 a~)u2 ] = p z \ r 3  ] 3koR 3~ dt ~ S h  + 

3k ( R a - - a ~ ) u ~  -- - -  1 9 =  ' (h--ko)]" 
-- 3 ( 7 3 - - t )  t \ r  3 ] PoC~ n 

We now go to  d i m e n s i o n l e s s  v a r i a b l e s  and f u n c t i o n s  i n  t h e  s y s t e m ( 2 . 5 )  

T=Cot/a3, x = R / a ~ ,  x 3=rf fa~ ,  U = u f f c  o, Y = R / c o ,  17 3=pffpoc~. ( 2 . 6 )  

In  t e rms  of  t h e  v a r i a b l e s  ( 2 . 6 ) ,  t h e  s y s t e m ( 2 . 5 )  t a k e s  t h e  form 

1 d [(x3 t) U]__ I]3xaaVS[x~ 2(x3--{)] 2(xa--i) p, ( 2 . 7 )  
3k d'~ 3kclx -}- 3ka----'T- 

(x0- I) = kn3(v - _ 

In the new variables, the conditions at the shock wave front are written as 

= ko - -  t q (o) U k o - - t  y ,  p =  y2, p ( 2 . 8 )  

By s o l v i n g  t h e  sy s t em ( 2 . 7 )  and ( 2 . 8 )  f o r  t h e  q u a n t i t y  o (s  e c o m p r e s s i o n  o f  t h e  ground 
a t  t h e  shock  wave f r o n t )  and chang ing  t h e  r o l e s  o f  t h e  v a r i a b l e s  x ~ and x,  we f i n d  t h e  d i f -  
f e r e n t i a l  equation for the compression 

(x3 - -  :l) H l  (~ + [x2 - -  2 (X3 -- t)] H3 (~ = ( 2 . 9 )  

where 

P dP '78 
H1 (~) = ~ ( k o -  t-------) + ~ - ;  H3 (c) = P - -  n 3  [ t  - -  n 7 1  (~3 - -  1) (x~ - -  t)  ( k o ) - ~  (ko  - -  t )  P ] ~ ;  m = (v~ - ~)" 

Equations (2.9) are basic for describing the parameters of the front of a strong shock wave 
from an underground explosion in this approximation. 

The boundary condition for o follows from the initial conditions of the original prob- 
lem: 
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(x) = a ,  ( 2 . 1 0 )  

where  o ,  i s  t h e  r o o t  o f  t h e  a l g e b r a i c  e q u a t i o n  P ( o , )  = H3. 

After we find the value of o from (2.9) and (2.10), we express the other parameters of 
the front in terms of o by relationships following from (2.8): 

p =  q(o) r k (  oP ~,12 ~ - - t  r .  ( 2 . 1 1 )  n(h--k~)' = \k--6-~--i/ ' U--  k~ 

Then we obtain the law of motion of the shock wave front in the form 

�9 = I , & .  
1 

The law of motion of the boundary of the gas cavity, according to (2.7)2, 

(2.12) 

is written as 

(2.13) 

or, from (2.11), 

xa [t  Ta~t(xa__t)  ka--t  ]m8 1 
= n 3 I f T - -  P ' m3 - -  3 (Ta - -  t)" ( 2 . 1 4 )  

3. Cases of Cylindrical and Plane Symmetry. Equations for the parameters of the shock 
wave front for cylindrical and plane symmetry of the motion from an explosion are obtained 
similar to the preceding case. The basic equation for compression of the ground at the 
shock wave front is written as 

(xa-- l) Hl (O) ~ + [xv-Z--(~-- l) (xv- l) ] Hv(x) --- 

�9 and v = 3 2,  and where H,;(x)= P- - I I3I t - - I I ; ' ( '~3- -1) (xv- -  t)(k(l)-l(k(l-- l)Plm~'; rr~ ~(73_ i ) ,  

1 f o r  s p h e r i c a l ,  c y l i n d r i c a l ,  and p l a n e  w a v e s ,  r e s p e c t i v e l y .  The b o u n d a r y  c o n d i t i o n  f o r  o 
stays the same as before (2.10). The law of motion of the shock wave front has the form 
(2.12), but the law of motion of the boundary of the explosion products is 

xv ---- [t - -  (klIa) -z  (73 -- l) (x v -- t) U21TM ( 3 . 1 )  

or x~ = [ t  78--1 ko --Ip] TM t 
ii a ( x V - - l ) ~  j , m y =  ~(73--I) 

L 

4. Asymptotics for x >> i. At large distances form the center of the explosion, at 
which x = r/a 3 >> i, we can view the explosion as a point source and set a s = 0. Then it 
follows from Eqs. (3.1) that 

U ,'~', \ 7-~_-71 x-re. (4.1) 

It can be seen that the mass velocity in the shock wave front is expressed the same as in 
the self-similar case - as a point explosion in an ideal gas. 

The shock adiabat of the ground at large pressures in (R, u 2) coordinates can be ex- 
pressed as a straight line R = c o + ~u 2, where 8 = h/(h - i), or in dimensionless form as 
Y = 1 + 8U. 

For a strong wave ~U >> i; then from (2.8) for x >> i, we obtain 

( kn~ ~z/, hn 3 
6 =h /k ,  Y = ~ U = ~ \ ? ~ - - I I  x-,l, ,  P ~ , ~ x - , .  

The law of motion of the shock wave front (2.12) becomes 

(4.2) 

/ 2 +  ~ \21(~+~,) (7~--t'~ z/(~+'') (4.3) 

From (4.1)-(4.3), it follows that at large distances (compared to the dimensions of the 
explosion location), the parameters at the front of a strong shock wave from an underground 
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explosion are described by relationships applied to an explosion by Sedov [I]~ However, it 
can be seen that the self-similarity of the motion of the shock wave front, which follows 
from the asymptotic formulas (4.1)-(4.3), are derived in a very narrow interval of distances 
from the center of the explosion. We will show this in the case of a spherical syn~etry 
(v = 3). Actually, on one hand,.the inequality x >> i is required for self-similarity, but 
on the other hand, we must have R >> c o or Y >> i. From the last inequality, it follows from 
a consideration of (4.2) that 

By combining both cases we have 

t << x << \ ~ - ~ /  \?~-- t1 - \z~-] ='-~a i' i ( 4 . 4 )  

where r 0 = (Ea/p0c~) z13 is the dynamic length of the explosion. For an explosion in nonpor- 
ous rock (k = i), the limiting compression is h = 5 and r0/a~ = i0. Then from (4.4.) we 
have 1 << x << i0. 
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From the last inequality it can be seen how small the interval of distances is, in 
which motion from an underground explosion can be considered approximately self-similar. 

5. Calculated Results and Comparison with Other Data. In order to demonstrate the 
accuracy of the proposed method of finding parameters of a shock wave front from an under- 
ground explosion, calculations were performed for an explosion in rock salt by two inde- 
pendent methods: with the use of Eqs. (2.9)-(2.14) and on the basis of the "Volna" program, 
a numerical mathematical model of an explosion in a solid continuous medium [7]. In both 
cases, the mathematical formulation of the problem is identical to (1.1)-(1.9). 

The parameters of the equation of state for rock salt were taken from results [8] of 
impact compression of salt. In the calculations, they are as follows: P0 = 2.16"103 kg/ma, 
c o = 3900 m/sec, k = i, n = 3.2, and h = 4.95. The explosion parameters are E a = 4.18.1012 
J, a~ = 0.3 m, and Y3 = 4/3. 

Results of calculating the x--r diagram, the compression of the ground at the shock 
wave front o(x), the velocity of the front Y(x), and mass velocity U(x), and the pressure 
P(x) are shown in Figs. 1-5, respectively; the solid lines are the calculations using the 
approximation, and the points are from the Volna program. The dashed curve in Fig. 1 shows 
the x--r diagram of the boundary of the gas cavity, calculated from Eq. (2.14). As can be 
seen from Figs. 1-5, the x--r diagrams differ by no more than 3%, the compression by 7%, and 
the pressure by 17% over the whole range of distances i ~ x ~ 70. 

The approximate method was used for calculations of parameters of the shock wave front 
for the "Ranier" explosion in tuff [9]. The constants in the equation of state of tuff were 
taken from the shock compression of this rock [i0]: P0 = 2-3"102 kg/m3, co = 1500 m/sec, 
k = 1.15, n = 3.7, and h = 5.0. The explosion parameters are E3 = 1.7 kton = 7.1"i012 J, 
and a 3 = 1.2 m. Two values were used for the adiabatic index of the explosion parameters: 
y3 = 4/3 (photon gas) and 5/3 (monatomic ideal gas). 

The results of calculating the pressure at the wave front versus distance are shown in 
Fig. 6, where points 1 and 2 are data for the case Ya = 4/3 and 5/3, respectively, 3 is the 
result of the experiment [9], and the curve is a calculation of the "Ranier" explosion [ii]. 
Figure 6 demonstrates the satisfactory correlation of our data and data from [9] and [ii]. 

The calculated results, presented in Figs. i-6, make I it possible to compare the values 
of the cold and hot components of the pressure in the shock wave front of an underground ex- 
plosion. Table 1 shows the ratio of the cold pressure to the hot pressure Px/P T as a func- 
tion of the distance x (x = r/as ~ i) for an explosion in rock salt. It can be seen that 
for x = 3.6 (r = 0.2 r0), the magnitudes of both pressure components are the same. The hot 

i 
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TABLE i 

, , Px+PT =r r/to o Px 

m 

Px/PT 

4,904 10,293 2,603 I 9,961 6,36 

2,600 [0,155 3,464 45,54 t6,33 0,560 

3,624 10,217 3,021 20,641 i0'44 i,024 

1,77 

component dominates at smaller distances, and the cold component at larger ones. Even at a 
distance x = 1.6 (r = 0.i r0), the cold component provides around 20% of the total pressure 
in the wave front. 

Thus, it can be asserted that in the shock wave from an underground explosion the cold 
component of the pressure (and internal energy) is substantial and neglecting it compared to 
the hot component is incorrect. 

From Figs. 1-6 it can also be seen that the calculated results of the parameters of the 
shock wave front in the expanding-shell approximation is valid even in the region where, 
strictly speaking, the front cannot be considered strong. The good agreement of the calcu- 
lated results of the numerical model of the explosion and the experiments occurs to pressure 
values in the wave front on the order of 0.01p0c~, which corresponds to a distance ~6r 0 from 
the center of the explosion. 

From what has been presented it follows that describing the shock wave front from an 
underground explosion in the expanding-shell approximation is rather accurateover the whole 
range over which this wave exists. The simplicity of the approximation makes it a conven- 
ient and useful method for calculating the parameters of the shock wave front of an under- 
ground explosion. Obviously this method is applicable for describing explosions not only in 
ground but it metals, liquids, and other condensed media. 
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